Взаимодействие алюминия и его сплавов с кислородом

Характер взаимодействия металлов с газами в условиях сварки во многом определяет природу пор.

Алюминий обладает большим сродством к кислороду. Растворимость кислорода в жидком алюминии ничтожно мала (не более 0,0003%) и характерным для процесса взаимодействия алюминия и его сплавов с кислородом является образование оксидов. Оксид алюминия образует несколько кристаллический модификаций, существование которых и переход одной в другую определяется температурой, временем выдержки и составом окружающей среды.

Скорость протекания диффузионных процессов и химических реакций, определяющих кинетический закон окисления, в данном случае соизмеримы.

Следует отметить, что температура, при которой начинается ин­тенсивное химическое взаимодействие металлов с парами воды, тем ниже, чем больше развита поверхность металла. Термическая прочность оксида Al2O3 чрезвычайно велика. Некоторые свойства оксида: температура плавления 2310-2320 К; температура кипения 2500-3800 К; плотность при температуре плавления 3,01 г/см3, в жидком состоянии – 2,5 г/см3; теплота плавления 110 кДж/моль, теплота испарения 485 кДж/моль; плотность при 20˚С 3,96 г/см3; плотность плёнки (отношение молекулярного объёма плёнки к атомному объёму металла) 1,25; коэффициент расширения 6,58×10-6 К-1; электросопротивление 1×107 Ом/см.

Окисление алюминия протекает с большой скоростью при ничтожно малом парциальном давлении кислорода или кислородосодержащих сложных газов и с повышением температуры ещё более возрастает.

На начальном этапе окисления алюминия формируется компактная аморфная плёнка Al2O3 барьерного типа, не проницаемая для окружающего воздуха. Дальнейший рост оксидной плёнки возможен в результате взаимной диффузии катионов металла и анионов кислорода через слой образовавшегося оксида. Диффузионный этап роста оксида носит эндотермический характер, т.е. является термоактивируемым процессом.

На практике окисление алюминия происходит в присутствии влаги, содержание которой в воздухе доходит до 4%. В этих условиях на поверхность алюминия в первую очередь адсорбируются молекулы воды, так как, в отличие от неполярных молекул азота, кислорода и водорода, они являются диполями, обладающими значительно большей адсорбционной способностью.

После физической адсорбции, характеризующейся слабым взаимодействием сил Ван-дер-Ваальса, начинается вторая стадия – хемосорбция:

2Al + 3Н2О → 6Н + Al2O3



Выделяющийся атомарный водород легко диффундирует в плёнку и решётку

алюминия, где часто ионизируется. Образующаяся оксидная плёнка обладает высокой адсорбирующей способностью и адсорбирует на свою поверхность влагу, кислород и другие газы. Далее кислород диссоциирует на атомы,

проникает в неупорядоченную структуру плёнки и может образовывать с

метастабильной фазой Al2O3 и водородом моногидоксид AlOOH, который в дальнейшем превращается в тригидроксид Al(OH)3.

Таким образом, при окислении при температуре 18-20˚С в атмосфере воздуха, содержащего влагу, формируются тонкие оксидные плёнки защитного типа, имеющие сложный состав Al2O3→ AlOOH → Al(OH)3.

Дальнейшее окисление алюминия и рост оксидной плёнки возможны при повышенных температурах в результате диффузии катионов металла через плёнку к поверхности газ-оксид и, наоборот, диффузии анионов к границе оксидная плёнка-металл.

Скорость увеличения толщины оксидной плёнки возрастает с повышением температуры, а переход металла из твёрдого состояния в жидкое не вызывает изменения в этой тенденции. Поскольку кинетику окисления определяет диффузия катионов парциальное давление кислорода не должно существенно влиять на этот процесс.

На состав, структуру и, в целом, на механизм и кинетику окисления алюминия влияют легирующие элементы в его сплавах и примеси металлов. В качестве основных легирующих элементов в сплавах присутствуют медь, магний, марганец, кремний, цинк, литий. В ряде сплавов в небольших количествах вводят добавки титана, бериллия, хрома, никеля, кадмия, скандия и др. Суммарное содержание легирующих элементов в деформируемых сплавах алюминия обычно не превышает 10%.

Такие элементы как магний, бериллий, литий вследствие более высоких, чем у алюминия, отрицательных энергий образования оксидов могут окисляться в сплавах алюминия даже при очень малом содержании. Литий, натрий, магний в жидком алюминии играют роль поверхностно-активных элементов. Их концентрация в поверхностном слое выше средней концентрации в расплаве.



Свойства оксидной плёнки на алюминии, которые имеют большое значение в

определении природы и механизма образования пор при сварке:

1. Оксидная плёнка алюминия отличается высокими защитными свойствами и на определённом этапе окисления может предотвратить дальнейшее взаимодействие алюминия с газами.

2. Оксид алюминия имеет высокую температуру плавления и в условиях сварки не расплавляется. В связи с этим поверхностная плёнка сохраняется как внутри объёма сварочной ванны (плёнка, попавшая в ванну с обратной стороны кромок и их торцовых поверхностей), так и на её поверхности (плёнка внешней стороны свариваемых кромок), несмотря на большую плотность, чем плотность жидкого алюминия. В последнем случае плёнка удерживается на поверхности ванны силами поверхностного натяжения.

3. Оксид алюминия не растворяется ни в твёрдом, ни в жидком металле. Плёнка также отличается высокой механической прочностью.

4. Наличие в сплавах алюминия таких легирующих элементов как литий и магний, делают оксидную плёнку на алюминии более адсорбционно-способной и усиливает её роль потенциального источника газов.

5. Важным свойством оксидной плёнки на алюминии является её высокая адсорбционная способность к парам воды. Водяной пар, адсорбированный окисленной поверхностью алюминия, удерживается до высоких температур. Часть влаги имеющейся на поверхности алюминия сохраняется даже после выдержки металла в вакууме при температуре до 350˚С. Оставшаяся часть, очевидно, связанная в виде гидрата и находящаяся в глубоких микротрещинах на оксидной плёнке, удаляется при более высоких температурах и может реагировать с металлом с образованием водорода. Гидрат оксида алюминия удерживает некоторое количество воды вплоть до

1000˚С.


0442668937599516.html
0442776513334840.html
    PR.RU™